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1. Introduction

Several signal detection and estimation problems arise in monitoring teleseismic and re-
gional events using data from long period and short period arrays. Both on-line and off-line
detection and estimation software must be able to operate successfully in the presence of
either relatively high noise or interfering events. Besides lowering detection thresholds, the
interfering events will produce distortions in velocity and azimuth estimators resulting in
poor locations for teleseismic events and in an inability to sort out velocities for the differ-
ent phases for near and far regional arrivals on the short period arrays. It should also be
noted that amplitude or power measurements made for discrimination purposes will also be
distorted.

Fitting data from an array of distributed sensors to a multiple-signal model for the purpose of
extracting possible mixed signals is a method used routinely in seismic data processing, e.g.,
Smart(1972). In general, however, such procedures do not constitute detectors. They have
served, among other purposes, to disentangle mixed (simultaneously arriving) long-period
surface-wave signals when one of them was sought as a critical discriminant to distinguish an
explosion from a possible earthquake. Such processors have had no independent detection
statistics, and, consequently, for verification and validation of waveforms extracted by their
use, alternative means are employed. Those means include the search, in the same time
interval, for body-waves of possible associated seismic events in the records of a complemen-
tary network of short-period seismic stations. Any tentatively identified surface waveform,
recovered by multiple-signal modeling, may be verified by association with one of the seismic
events detected and located by that search. If a surface waveform so extracted meets the
criteria of arrival time, dispersion, and magnitude predicted from the estimated location,
magnitude and time of occurrence of a seismic event discovered in the short-period data, the
surface-wave is associated with that event and treated as 'genuine'.

To illustrate, consider Figure 1, which contains a verifiable mixture of signals from two
earthquakes, one from the south of Africa and the other from the Philippines, observed at
a long period array in Korea. As we will note later, conventional methods applied to this
data indicate a single event from somewhere between the two observed events. Rather than
discovering such incorrect results using an alternate network or short-period records, it would
be strongly preferable to have a detection statistic that sorted out multiple arrivals from the
long-period records in Figure 1. We show that the sequential detection procedure given in
this paper identifies the two signals, as well as a complementary unidentified component that
may be another event or noise.

Another powerful advantage of the multiple-signal detector is its immunity to interference
from persistent coherent noise, natural or anthropogenic, from such phenomena as, say, the
microseisms of storms at sea, or from power plant emanations. Conventionally persistent,
nuisance coherences are dealt with by notch filters to prevent the detector from responding
to the coherent noise, and from missing smaller signals in adjoining frequencies. These notch
filters generally operate right in the midst of the band of frequencies of interest, and that
critical portion of the band is sacrificed to accommodate the vulnerabilities of the detector
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Figure 1: Mixture of signals from two earthquakes from south of Africa
and the Philippines observed at USAEDS long-period seismic
array in Korea. Correct geodesic back-azimuths are 226 degrees
and 198 degrees.

(Clauter, 2004). Finally, we note another benefit of the sequential F-detector proposed in
this paper is its use of the noise computed during the signal window. Conventional detection
using the ratio of the short-term average mean-square error (STA) to the corresponding
long-term average (LTA) requires that the LTA be refreshed after the onset of a signal to
remain relevant, causing a blind window where the detector will miss valid signals.
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Approaches to detecting signals on arrays all focus on the basic model that expresses the
observed channel as sums of delayed signals and a unique noise process. The delays are
functionally dependent on velocity and azimuth if the signals are propagating plane waves,
and this is the assumption that is usually made. Methods that are commonly in use for ana-
lyzing such data, when a single signal is assumed to be present, can be roughly categorized as
(a) beam-forming and plotting the power as a function of slowness, which can be converted
to estimators of velocity and azimuth, (b) Capon's estimator (see Capon, 1969, Capon and
Goodman, 1970), (c) beam-forming converted to an F-statistic by dividing by an estimator
of the noise power (see Melton and Bailey, 1957, Blandford, 1970, Shumway, 1970, 1971,
1983, 2000), (d) Multiple Signal Characteristic (MUSIC) (Schmidt, 1979, Stoica and Neho-
rai, 1989), and (e) cross correlation (Tribuleac and Herrin, 1997). Several algorithms such
as the sequential F-detector proposed here and the multiple signal characteristic (MUSIC)
algorithm are available that offer promise for handling array data with low signal-to-noise
ratios and contamination from interfering signals. In this proposal, we exhibit the perfor-
mance of currently available algorithms on teleseismic and regional data containing mixed
signals and demonstrate the superior performance of the sequential F-statistic. A sequen-
tial analysis of power using the F-statistic is proposed that estimates the correct number of
signals and their velocities and azimuths. This is contrasted with results using conventional
f-k estimators that do not handle the mixed signal case.

2. The Multiple Signal Model

The usual model expresses the received data yj(t),j - 1,..., N, t = 1,... ,n at N sensors
M

yj() W S (t + ± rOk) + vj(t) (1)

as the sum of M propagating plane waves with time delays Tj(Dk) = -0k for the k0h signal
at the j'h sensor where rj is the two dimensional coordinate of sensor j in km and Ok is the
two-dimensional slowness vector of signal k in sec/km. The two-dimensional slowness vector

Ok = (01k, 02k)' is related to the velocity Vk I= IOj I` and azimuth ak = tan-'(O2k/Olk)).

Because the plane wave model formulates more easily in the frequency domain, we may
consider a model for the discrete Fourier transforms, say

M

Yi(wA) =E exp{27riwe rjOk}Sk(w0) + Vj(wi) (2)
k=1

evaluated at = 1. .. L frequencies of the form wa = 1/n in the neighborhood of some
target frequency w, measured in cycle per point. A convenient representation of the model
is obtained by stacking the sensors in an N x 1 vector YA = (Y1 (wI) ... ,YN(wj)'. Then, the
above equation becomes

YA= ZA + Vi (3)
where St = (SI (wA), ... , SM(we))' denotes the unknown vector of signals at frequency w, and

Z(E)) ={exp {27riw rOk}, = 1,...,N,k =1...,M} (4)

3



is an N x M matrix that defines the way the plane waves map into the observed sensor

elements. Suggested detectors are based on the statistical structure assumed for the elements
of the model (2) under the fixed and stochastic signal assumptions.

Suppose that the signal is deterministic and the noise has N x N spectral matrix f,(w).
Then, it is clear that asymptotically, the inferences can be based on a model that assumes
that Yt, t 1,..., L are independently distributed with mean Z(O)Sj and covariance matrix
f,. Various specializing assumptions lead to the classic beam and to the various forms of the
F-detector. We remark that it is clear that the deterministic model has the nonlinearity in
the mean function. The primary interest will be in the parameter matrix e - (01,02,... IGM)

which enters non-linearly in the mean function,

EYe) = Z1(E)Sf.

If the signal is random with q x q spectral matrix f, (w), Ye, f = 1, ... , L will be independently
distributed with mean zero and covariance matrix

S= z(e)f8(w)z;(e) + fv(w) (5)

and the nonlinearity in the slowness parameters is concentrated in the covariance structure.
Such a model can be used to argue in the single-signal case for Capon's (1969) high-resolution
estimator and for the MUSIC estimator of Schmidt (1979). Furthermore, a maximum like-
lihood estimator can be derived by maximizing the quasi-Gaussian log likelihood implied
under the complex Gaussian assumption (see Shumway et al, 1999).

There are a number of conventional approaches to estimating the slowness parameters and
hence, the derived velocities and azimuths. Most common are the beam power and F-
statistics described in Section 3.1 below and variations on the correlation method, described

in (3.4). Note that the F-statistic is a monotone function of the statistic, semblence. We also
adapt the Multiple SIgnal Characteristic (MUSIC) algorithm of Schmidt (1979) to seismic
arrays. Finally, we look at the Capon (1969) "high-resolution" estimator as another variation
based on the eigen vectors and eigen values of the spectral matrix.

The following Section 4 introduces the multiple signal approach using the partial F-statistic
which is shown to improve on the conventional estimators in Section 5.

3. Conventional Approaches

We summarize first some common approaches to determining the velocity and azimuth of
a possible mixture of propagating signals. The model is expressed in terms of slowness in
seconds per km 01 = (01, 02)', where 01 and 02 are the horizontal and vertical components.
Velocity c = 1/11011 and back azimuth . = tan- 1 (02/01 ) are the propogating plane wave
velocities in km/sec and back azimuths from due north. We will see later that the techniques
described below do not work well on some common mixtures.

4



3.1 Beam Power and F-statistics

Consider the single signal version of (1), namely, take M = 1 so that the model becomes

yj(t) = s1 (t + r +Oi) ± vj(t) (6)

for the jth sensor. Transforming this model to the frequency domain and stacking the
observed series yields

Ye = zei(01)SA1 + V1 (7)

where
z11(01) = (exp{27riwe r(0 1 },..., exp{27riwt r'y01})' (8)

is the frequency domain version of the beam-steering vector when it is concentrated at the
true slowness 01. The beam probe

Bt(O) :- N -1zj~j(O)V, (9)

will be large at 0 = 01 and will be small off the beam. If the spectral matrix f,(w) = s,(w)IN
is diagonal with equal spectra on all channels, then the beam power

L
PB (0) 113 Z B(0) 1' (10)

is distributed proportionally to a chi-squared random variable with 2L degrees of freedom
when 0 = 01 the true slowness value. Unfortunately the proportionality constant is a function
of the unknown noise spectrum P,(w). The noise spectrum can be estimated from a sample
of data prior to the signal, but the problems with that practice have already been mentioned.
Note that L = BT where B is the bandwidth in Hz, and T is the sample length in seconds.

It is also the case that the value of 0 that maximizes the beam-power (6) also minimizes the
mean squared error

L
SSE(O) = > Y - zil(O)BI (11)

and it can be shown that the likelihood ratio test of no signal in the model (5) leads to the
F-Statistic N L I IBe(0)12 ( 2

F(b) = c SSE(O) ' (12)

which converges to a non-central F-distribution with df1 = 2(L+ 1) and df2 = 2[L(N-1)-1]
degrees of freedom as 0 --- 01. The constant is c = df2/df1 The advantage of the F-statistic
is that its distribution does not depend on nuisance parameters so that thresholds can be set
directly from the tabulated values. Furthermore, an estimator of the noise power is available
from the signal window as P,(w) = SSE(O)/N.
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3.2 Capon's High Resolution Method

Estimators available in the engineering literature depend primarily on the sample spec-
tral matrix and on the average wave-number value over a frequency band. For example
Capon's(1971) estimator uses the sample spectral matrix

L

y = E, Y1Y1 (13)

as input to the proposed estimator obtained by maximizing the function

C(o) = ;(tY!O]-1, (14)

which has a distribution proportional to the chi-squared distribution with 2(L - N + 1)
degrees of freedom (see Capon and Goodman, 1970). The test statistic is evaluated at at an
integer near the mean frequency, say 1. The distribution here also depends on the unknown
signal and noise spectra P8 and P1 , or on the noise spectrum only when there is no signal,
i.e., P= 0

3.3 The MUSIC Algorithm

The MUSIC approach suggested by Schmidt (1979) has been extended to arrays by Shumway
(2002) for possible use in detecting infrasound signals. The approach is based on orthogonal-
ity properties of the eigen vectors of the spectral matrix under a simple multivariate random
signal model. In general, the test statistic (11) is expected to have large values under a
model that assumes an appropriate number of input signals.

An estimator based on the eigen vectors of EY forms the main component of the Multiple
SIgnal Characteristic (MUSIC) detector proposed by Schmidt (1979). A good summary of
the statistical properties of this estimator is in Stoica and Nehorai (1989). In particular,
letting el, e2 , ... ,e be the eigen vectors of EI take the MUSIC detector as the maximizer
of

M(O)= [•(o) N j(O) .(15)
j=M+1

where we assume that there are M possible signals.

The approach to determining the number of signals and their velocities and azimuths reduces
to trying various values of M in the above equation, say M = 1, 2, 3, 4, looking for peaks in
the plotted function M(O).

It is interesting to note that the Capon detectors can also be written in terms of the eigen
values and eigen vectors of the spectral matrix. We note that (14) becomes

[i()(N 1 j -1

The equation exhibits the estimator in terms of a matching of the probe vector with the
eigen vectors.
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3.4 Correlation Methods

There are several simple variations that use the cross correlation pairs measured over the
array to estimate the velocity and azimuth. Note first that the single signal model (5) implies
that the sample cross correlation function between yj (t) and yk(t) will tend to be maximized
at lag (rj - rk)'01.

One simple method might be to simply average the cross correlation functions which turns
out to be nearly the same as broad band beam-forming. A somewhat better method is to

think of the estimated lag Tjk that maximizes the cross correlation between yj(t) and yk(t)

to be represented by the model

Tjk = (r, - rk)'01 + ejk (16)

for j : k = 1..., N and minimize some objective function of the residuals ejk. Tribuleac
and Herrin (1997) use the sum of the absolute errors, robustified by dropping out some the

largest ones.

The computations done later here simply minimized the sum of squared errors with no
robustification. For example, just chose 01 to minimize

sse == [Tk - (ri - rk)'01] (17)
j<k

One problem with these approaches is that standard errors of the estimator for 01 are not
easy to come by. The distribution of the maximizing values Tik is not available, particularly

when it is noted that the errors should be highly correlated because of common sensors used
in calculating the cross correlations, for example, /12, A13, . P1N all involve the first sensor.

3.5 Remarks

Given the erratic performance of conventional estimators to be demonstrated later in the
case of mixed signals, developing a means for automatically detecting and isolating multiple

interfering signals should have high priority. First of all, one would like to have a reliable
means of detecting a single signal over noise, and all methods appear to do an acceptable job
of indicating local maximums that agree. The question of statistical significance of the single-
signal detection rests on the probability of obtaining a larger value for any one of detectors

(a)-(d) or the cross correlation method. A satisfactory solution to the problem of statistical
significance is available only for the F-statistic, where a rigorous P-value is available based
on asymptotic approximations (see Shumway, 1970, 1971, 1983, 2000). The cross correlation

is based on the lag corresponding to the local maximum, a function of a highly variable
measurement that ignores the fact that one must use cross correlations involving common
sensors. The Capon estimator has a distribution (see Capon and Goodman, 1979) that

depends on the noise spectrum, a nuisance parameter that would have to be estimated from

noise preceding a potential signal. The MUSIC estimator depends on deriving distribution

7



theory for a statistic depending on the eigen vectors of the spectral matrix and will be
unnecessarily complex (see Stoica and Nehorai, 1989), given the erratic performance that
the method exhibits when applied to determining the exact number of signals. Nevertheless,
the array version of this statistic has not been applied in a seismic context, and we retain it
as an option.

4. Multiple Signal Detection and Estimation

It is obvious from the preceding section that the conventional methods are unreliable for
detecting the correct number of signals and for estimating their velocities and azimuths.
In this section, we develop a sequential extension of the F-statistic for multiple signals
that provides effective methodology for identifying the correct number of signals and their
estimated velocities and azimuths. We also provide estimators for the uncertainty using a
multiple signal bootstrap procedure. Finally, we show how to develop deconvolved waveformns
for each of the component signals.

Solutions to the above problems would enable online detection procedures that would identify
single signals and would also identify multiple signals or contaminating propagating noises.
Such mixtures contribute to errors in arrival time estimation that is essential for location
purposes. Uncertainty estimators for velocity and azimuth would help to identify travel
time uncertainties in un-calibrated areas. Procedures for estimating velocities of P and S
components could be helpful in constructing travel time predictions for separate phases for
regional data. Deconvolutions could be used to determine better amplitudes and spectral
ratios for discrimination purposes. It should be noted that work on multiple signal models
has been common in early seismic research (see Shumway and Dean, 1968, Shumway, 1970,
1971, Blandford et al 1973, Shumway, 1983).

4.1 Maximum Likelihood Estimation

The proposed solutions to the above problems rest squarely on formulating the multiple
signal model as a nonlinear regression problem in the frequency domain. We formulate a
model for a time series observed at sensor j = 1,... N at time t = 1, . . . , n as the delayed

sum of M signals and noise, of the form (1). In particular, we wish to have an unambiguous
sequential procedure for estimating the number of components M and for estimating the
slowness matrix E for a given value of M. In this analysis, the signals are assumed to be
deterministic unknown functions, and the noises are assumed to be stationarily correlated
over time but independent from channel to channel. As usual, we work in the frequency
domain by vectorizing yj(t) and taking Discrete Fourier Transforms to obtain the model
(2). In general, we evaluate all statistics over L = BT frequencies, where B denotes the
bandwidth of interest in Hz and T denotes the sample length in seconds. The N x 1 vector
Yj is expressed in terms of the unknown signal transform S, and the N x M slowness matrix
ZI(O) as in (2) and (3). The unknown slowness parameters are collected in the 2 x M matrix
E = (01, 02 ... , OM). Regression theory (see Shumway and Stoffer, 2000, Section 5.4) applied

8



for a given slowness matrix 9 implies that we may estimate the unknown signal by

Sý(e) [z;(e(O)j ZNO)Ye. (18)

Generally, Se(8) is concentrated out of the likelihood, and we determine 6 as the minimizer
of

L

SSE(O) = -I(Ye - Ze(O),e(O))H2. (19)

Searching for a minimum in the squared error (19) over 8 or, equivalently, maximizing the
F-statistic for testing Se(8) 0 leads to

PB( (20)
F(J) =cSSE(O)'

where
L 1

is the generalized beam-power and c = df2/df1 is the constant required to convert (20) to an
F-statistic with df1 = 2(L + M) and df2 = 2[L(N - M) - 1] degrees of freedom. We call (21)
the generalized beam power because it reduces to the ordinary beam power when M = 1.

4.2 Sequential Analysis Using Partial F-statistics

In order to develop a sequential F-test for adding in the signal components SS 2 ,..., SL,
we appeal to the likelihood ratio test of St = (Sti, 0) against the alternative S1 (S=A, S12)
where the signal vector is partitioned into MA and Ml2 components (M =M 1 M+ M2) respec-
tively. The likelihood ratio criterion yields

= SSE(61 , 0) - SSE(01 , (2) (22)SSE(6 1, (2 )

where 6 = df2/df1 and U1 denotes the estimator for the slowness matrix 01 under the reduced
model. The test statistic compares the mean squared error under the hypothesis that the
added signal is absent under the hypothesis that the added signal is present (numerator) with
the denominator which measures the mean squared error under the full model. Under the null
hypothesis, F has an F distribution with with df1 = 2M 2(L+ 1) and df2 = 2[L(N- M) - 1)]
degrees of freedom. To apply the result, we add the potential signals in sequentially, each
time taking M1 as the number currently in the model and M2 = 1. It is intuitively pleasing
that the numerator is essentially the difference between the generalized beam power under
the reduced model and the full model. A sequential search proceeds by performing the partial
F-test (22) with M taking values 1,2, 3,... and stopping when F is no longer statistically
significant.

9



Note that a different sequential procedure, based on residuals from lower order signal models,
was proposed in Smart (1972) who searched for a second signal by first stripping the first
signal away, i.e., by computing

Vl)• = Yf - Z11(6l,§l

and then selecting 62 as the value minimizing

L

where j,1 denotes the solution of (18) under the reduced model and ý,2(02) denotes the
solution of (18) with the residuals Vii as observations.

An additional statistic of interest in applications is the proportion of power accounted for
by any given multiple signal model, given as

R() pB(O) (23)
R2(e) = liY r1112'

which is immediately recognized as the ratio of the generalized beam power to the total
power. Smart has suggested using the proportion of power accounted for as a measure of
how well the model fits.

4.3 Model Selection

An alternate approach can be taken in terms of a model selection criterion in the AIC family.
We take here a modification to the corrected AIC, developed especially for regression models
by Hurvich and Tsai (1989). In the case of the signal model (2), we develop a real regression
model isomorphic to (2) and then expand in a Taylor's series about the 2M x 1 vector 0.
Taking the Hurvich-Tsai approach essentially doubles the numbers appearing in the usual
form. We obtained

AICc(M) = log SSE(E) 2NL + 2M(L + 1) (24)
g NL 2NL - 2M(L + 1) - 2(

The value is computed for signal models with respectively M = 1,2, 3,... and the value M
that minimizes AIC(M) determines the number of signals chosen for the model.

As a confirming check, we also compute the values of the model selection criterion (17) as a
function of m and look for a confirming minimum. We illustrate the approach for the long
and short period events given in Figures 1 and 3 and show how it leads to resolving the
mixtures of signals for these two data, sets.

4.4 Confidence Intervals

First, note that we have ended with a multiple signal model and need the variances and
covariances of the slowness matrix 6 = (1,02,... ,OM). For the vector case, it would be
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possible to express the non-linear regression model (2) as a first-order Taylor's series ex-
pansion in E( and S1, S2, ... , SL. Then, the Gauss-Newton covariance matrix derived from
the nonlinear regression analysis prevails. The variance covariance matrix of the estimated
velocity and azimuth parameters could then be computed by the delta method. This proce-
dure seems rather involved, and we adopt a simpler approach that depends on a frequency
domain version of the bootstrap (Paparoditis and Politis, 1999, Shumway and Stoffer, 2000,
p. 245). Note that the residuals

vA = re (25)

should be approximately independent with mean zero and variance f,(w) under the model.
In order to obtain one bootstrap sample, take a random sample of the residuals above, with
replacement. Suppose this random sample is denoted by 0) V(')..., V (1). For this initial
bootstrap sample, construct a pseudo-sample of observations

yIl) - ZI(O)SA(() + V(') (26)

and apply the estimation procedure, obtaining an estimated O•'1 for this first bootstrap
sample. Then, repeat the above sampling procedure, obtaining a large number, say 500,
estimated values (5(), &(2),..., ((500). Finally, convert these values to velocity and azimuth
and use the two sampling distributions to obtain variances and lower and upper confidence
intervals for velocity and azimuth.

4.5 Deconvolution of Multiple Signals

It should be noted that the waveforms of the signals recovered from the final model may show
features that are not available in the simple beam. The signals may be recovered using the
inverse finite Fourier transform of the frequency domain version (14) which will be available
over a limited band spanned by the vector signal. In order to estimate the vector of time
functions s(t) = (s1(t),...,sM(t)), we expand the the frequency range to (-1/2,1/2) or
(0, 1) by taking S(wj) = Se over the band and S(wj) = 0 for wA, = e/n, f = 0, 1, ... , n/2 and
by completing to frequencies between 1/2 and 1 using S(W+nl/2) = conj S(wt-f/2),. Taking
the inverse Fourier transform

(t) = n-1/2 ,(w) exp{21riwjtl (27)
A=0

and shifting the coefficients gives the deconvolved series. Note that increasing the original n
to 2n will eliminate the end effects of the discrete Fourier transform.

5. Multiple Signal Analysis of Recorded Events

The value of multiple signal techniques developed in Section 4.1-4.3 over and above conven-
tional multiple signal techniques such as MUSIC or single signal techniques like the F-statistic
(semblence) or the Capon estimator ultimately rests on their success in analyzing real data.
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Motivation for the multiple signal analysis is provided initially by analyzing a teleseismic
recording known to contain two earthquakes where it is shown that conventional techniques
fail and that a combination of the partial F-statistic and model selection separate the record-

ing into two earthquakes and a noise source, known to be generated by a Pacific storm. Ver-
ification of the methodology is provided by using a contrived mixture of signals with known
velocities and azimuths. A third example involves analyzing a noisy China event where the
elimination of propagating noiseprovides a visual verification of an obscured depth phase.

While the examples make it clear that conventional methods work poorly, that is not the

only motivation for using the techniques derived in Section 4. We mention the following
specific advances for the new methodology:

A. Nonlinear optimization in the sequential procedure provides computationally more
accurate velocities and azimuths than are obtained by grid search methods typically
used by conventional methods in Section 3. All velocities and azimuths are estimated

by maximum likelihood and hence, will be efficient.

B. The sequential procedure using partial F-statistics and AICc shows the results for all

possible multiple signal configurations and settles on the one that minimizes AICc

C. Uncertainties for the best model in 2. are computed, giving standard deviations and
,confidence intervals for velocity and azimuths.

D. The separate waveforms of the component signals are estimated using least squares
deconvolution in the frequency domain.

We should make it clear from the onset that the same systematic procedure for identifying
the components of the possible mixture and estimating the resulting velocities and azimuths
of the components will be followed in each of the examples in the following sections. We
summarize the approach for each example as:

1. An initial time-frequency spectral analysis is used to determine an appropriate
bandwidth for the conventional and sequential analysis. This analysis can also be used
to focus on particular arrival phases and to isolate the appropriate time interval and
scale for the sequential analysis.

2. Conventional slowness analysis plots for (a) beam power, (b) Capon, (C) F-
statistic and (d) MUSIC estimators are used to suggest regions in slowness space
where there might be signals. This will often help in setting initial slowness values for
the multiple signal optimization sequence.

3. An initial maximum for the number of signals (usually no more than four) and their

initial slowness coordinates is used to start a sequential analysis, with the final number
of signals chosen by minimizing the fit Corrected Information Theory Criterion
AICc. The proportion of variability accounted for and the partial F-statistic
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for adding a signal axe shown at each step. The final configuration is determined by a
subjective weighting of these criteria.

4. The frequency domain bootstrap is used to develop 95% confidence intervals for the
velocities and azimuths in the optimal configuration.

5. Deconvolution is used to produce estimated waveforms for the component signals.

5.1 A Teleseismic Recording Containing Two Earthquakes and a Noise Source

We begin by considering the data that precipitated interest in multiple signal models. This
data, shown in Figure 1, contains a verifiable mixture of two earthquakes, one from the south
of Africa and another from the Philippines observed at the Korean Seismic Array (KSAR).
Figure 2 repeats the last channel of this mixture and shows its time-varying spectrum.

The time-frequency spectrum suggests a band (.02-.08 Hz) for analysis and we adopted this
range for the slowness statistics shown in Figure 3. The time-frequency spectrum shows
two main arrivals with 2-3 possible secondary arrivals. Figure 3 shows the slowness plots
for methods (a)-(d) and we note that the beam power and F-statistic show only a single
arrival at 203 degrees. All methods show initial arrivals in this range, with the Capon
and MUSIC (3 signals assumed) estimators showing bulges in the 150-160 degree range. The
correct azimuths axe 226 degrees and 198 degrees which are both different than the estimated
primary azimuth obtained by all methods. The results are summarized in Table 1 below.

Table 1: Conventional Estimates for Long Period Event

Estimates F-stat Correlation MUSIC Capon
Azimuth 1 203 204 204 207
Velocity-1 3.5 3.7 3.7 4.1
Azimuth-2 158 149
Velocity-2 5.3 4.5

We complete Step 3. by setting an initial guess for the maximum signals at 4, with initial
guesses for the nonlinear optimization focusing first on the third quadrant (-.1 -. 1), with a
possible secondary in (.1, -.1). The other two start slowness values were (.1, .1) and (-.1, .1).
Table 2 below shows the results of the model selection procedure and the results indicate
three signals by AICc and possibly four signals by the partial F-test. Values around 2 are
marginal for this particular F and we settle on three signals.

Table 2: Model Selection for Long Period Event

Model R 2  AICC Partial F-stat
1-Signal .86 -1.25 35.1
2-Signal .95 -1.87 9.8
3-Signal .98 -2.21 7.4
4-Signal .99 -1.57 2.2
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The final results, including the uncertainty estimates using the bootstrap as in Step 4 of the
suggested procedure leads, are summarized in Table 3 below. We note that the estimators
are still several degrees off the known azimuths but that the confidence intervals include the
true values.

Table 3: Summary Estimators and Uncertainties for Long period Event

Parameter Known Value Estimate(sd) 95% Confidence
Azimuth 1 198 200(1.7) 197-203
Azimuth 2 - 130(2.2) 125-134

Azimuth 3 226 223(2.9) 216-229

The final step involves deconvolving the signals and the separate components are shown in
Figure 4. The signal at 223 degrees looks reasonable for the primary signal, as does the
second signal at 200 degrees. The noise at 130 degrees seems large and there must be some
cancelation for the three to add to the observed series. For this reason, it seems essential
to construct a mixture where the component signals are known and we do this in the next
section.

1000! I ' .
Single Channel Teleseismic Event

0
0i .1 I, , I

-00 200 400 600 800 1000 1200 1400 1600 1800 2000

-1000
200 400 600 800 1000 1200 1400 1600 1800 2000

1000 ,

Deconvolution:200 degrees:
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-1000 I I I ,
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Figure 4: Deconvolution of two identified signals at known azimuths of 226

and 198 degrees and a third unidentified signal or noise source
at 135 degrees at a long period array.
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5.2 Two Regional Events and a Contrived Mixture

In order to verify that the procedures described in Sections 4.1-4.5 perform as claimed, we
took regional signals recorded at the Korean seismic array from 38 degrees and 196 degrees
respectively and first analyzed them separately using Steps 1-4. Figure 5 shows the time-
frequency spectrum of the regional signal and suggests a frequency range of .3-3.3 Hz for
analysis. The first 10 seconds seems to contain a mixture of three different frequencies,
centered at about .75,1.5 and 2.8 Hz respectively. The signal is quite impulsive. Figure 6
shows a strong arrival at 38 degrees (F-statistic and cross correlation) or 39 degrees (Capon
and MUSIC). The results are summamrized in Table 4 below.

Table 4: Conventional Estimates for Regional Signal from 38 Degrees

Estimates F-stat Correlation MUSIC Capon
Azimuth 38 38 39 39
Velocity 11.9 11.9 15.6 15.6

Step 3 can be performed as a check against the possibility of additional signals. Starting
with the assumption that there are a maximum of two signals present, we chose (.1, .1) for
the first slowness and (-.1, -. 1) for the start point in a search for a potential additional signal,
we obtained the results as summarized in Table 5 below. We note that AICC is minimized
for the single signal model and that the partial F-statistic of 1.7 is not large enough to add
the second signal. Note also that the percentage of variation accounted for (57%) is much
smaller for this noisier regional data.

Table 5: Model Selection for 38 Degree Regional Signal

Model R2 AICc Partial F-stat
2-Signal .571 -2.96 22.8
2-Signal .61 -2.93 1.7

The single signal model then gives estimated azimuths of 38.3(.3) degrees with the 95%
confidence interval (37.9-39.0) via the bootstrap. The estimated velocity was 11.9(. 1) km/sec
with 95% confidence interval (11.8-12.1) km/sec. Using the slowness vector (.0519, .0657)
corresponding to the these velocities and azimuths leads to the deconvolution estimator
shown in Figure 9.

As a second regional event, consider another regional event, shown in Figure 7, recorded
at the same array. This particular event generated a longer lower frequency signal, as can
be seen from the single channel and time-frequency spectrum shown in Figure 7. Figure 8
shows the slowness plots for this second event and it can be seen that all methods indicate
a single peak for velocity and azimuth, with the summary results as given in Table 6.

We note here the beginnings of a persistent tendency of the Capon and MUSIC estimators
to produce higher than normal velocities. As can be seen in (14) and (15), both of these
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estimators involve the spectral matrix (13) which must be estimated from a band of of L > N
frequencies where N denotes the number of sensors. The matching vector z1(0) is chosen at
the center 1 corresponding to the average frequency over the interval. It might be better to
modify both statistics by averaging over the single frequency matches but we have not tried
this approach. The azimuths for all methods match quite nicely.

Table 6: Conventional Estimates for Regional Signal from 196 degrees

Estimates F-stat Correlation MUSIC Capon
Azimuth 196 196 198 198

Velocity 9.4 9.2 15.8 15.8

Table 7: Model Selection for 196 Degree Regional Signal

Model R2  AICC Partial F-stat
1-Signal .59 -1.61 24.3
2-Signal .65 -1.62 7.5
3-Signal .68 -1.56 1.4

The model selection results for this particular regional signal indicate that a second conta-
minating process may be present. The model selection statistic AICc is minimized for the
two-signal model and the F-statistic for this signal may be too large to ignore. Our tenta-
tive conclusion for this event is that there is a primary signal at 196(.6) degrees with 95%
confidence interval (195-197) degrees and a secondary signal at 56(1.1) degrees with 95%
confidence interval (55-59) degrees. The velocity of this second signal is slower at 3.1(.05)
km/sec. However, the joint deconvolution of the two components using the slowness vector
resulting from the two-signal model is shown in Figure 10. Clearly, the results show that the
contaminating signal has low amplitude and we note parenthetically that it probably will
not exert a significant effect on the contrived mixture.

As a test of the estimation procedure, the two previous arrays were mixed by adding the two
events together on common channels with equal amplitudes. Figure 11 shows the contrived
mixture along with its time-frequency spectrum. Note first that the time-frequency spectrum
suggest the frequency range .2-3.3 Hz and this is what was used as input. The slowness plots
all show both signals as being present at the correct azimuths. Note that the Capon and
MUSIC again over-estimate the velocities if the average frequency of 1.75 Hz is chosen.
Choosing .9 Hz on the basis of the time-frequency spectrum leads to the more reasonable
estimates shown in the plot and in Table 8.
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Table 8: Conventional Estimates for Contrived Regional Mixture

Estimates F-stat Correlation MUSIC Capon
Azimuth-i 196 196 196 196
Velocity-i 9.5 9.4 13.7 13.7

Azimuth-2 38 38 38
Velocity-2 9.9 7.5 7.5

It was noted in Figure 12 that the slowness plots for the Capon and MUSIC (with two signals
assumed) detectors showed the second weaker signal to be present at fairly clearly defined
azimuths. While this simple case is one where a weaker but well separated signal is detected by
these two methods, tests of significance and confidence intervals are not provided. The single
signal version of the F-statistic shows only a weak indication of a second signal so that it is clear
that more must be done.

Hence, we apply the partial F-statistic and AICC, fitting a sequence of models with M
1,2,3 signals. The results, summarized in Table 9 below, show the correct number of signals
by either the model selection or partial F-statistic criteria. Therefore, the two-signal model
can be used to develop the final estimators and confidence intervals for velocity and azimuth
which will produce the deconvolution of the two signals.

Table 9: Model Selection for Contrived Regional Mixture

Model R 2  AICc Partial F-stat
1-Signal .46 -1.90 14.5
2-Signal .60 -2.05 5.3
3-Signal .64 -2.00 1.6

Table 10 summarizes the final estimators and their uncertainties for the optimum two-signal
model. Note that both azimuth estimators are close to those obtained for the separate event
analyses so this simple example verifies that the methodology used for the long period event
is reasonable.

Table 10: Summary Estimators and Uncertainties for Contrived Mixture

Parameter Known Value Estimate(sd) 95% Confidence
Azimuth 1 196 195.5(.62) 194.1-196.5
Velocity 1 9.5(.11) 9.2-9.7
Azimuth 2 38 38.4(.88) 37.8-41.2
Velocity 2 12.0(.14) 11.8-12.3

Finally, Figure 13 shows the result of the least squares deconvolution of the two signals.
Comparing these deconvolved signals with the single-event deconvolutions in Figures 9 and
10 shows excellent agreement.
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Figure 13: Deconvolution of mixture (38, 196 degrees)s degrees.

5.3 A Regional Event from China With Depth Phase Obscured by Noise

In this example, we look further at the event analyzed by Stroujkova and mieter (2006) in

their preliminary report. The event, from NE China, had magnitude of 4.7, with published

depths between 0 and 15 kilometers. Because of the high noise level, as can be noted from
Figure 14, there will be difficulty in establishing whether or not there is a depth phase. We

show in this example how a multiple signal approach eliminates enough of the noise so that

the deconvolved signal shows a clear depth phase.

The time-frequency analysis in Figure 14 covers a relatively long time interval. The broader
time interval is primarily to emphasize the multiple arrivals and relatively complex structure

of the single channel time-frequency spectra.

Figure 15 shows the slowness analysis for this event and we note that the conventional

estimators show a primary arrival in the neighborhood of 284 degree except for the correlation

analysis which is off by about 40 degrees. Furthermore, the Capon and MUSIC estimators

show a secondary peak in the 150-160 degree range.
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Table 11: Conventional Estimates for Regional Event From China

Estimates F-stat Correlation MUSIC Capon
Azimuth-1 287 247 284 286
Velocity-1 8.1 24.9 12.1 13.7

Azimuth-2 153 159
Velocity-2 13.5 14.1

The results of a combined multiple signal analysis using the partial F-statistics and the model
selection criterion AICc are shown in Table 12. Note that two signals each give statistically
significant added power, as measured by the partial F-statistics and that the third one does
not add substantially to the power. Noise is still quite high, with only 50% of the power
accounted for by the two signals. accounted for by the two main signals. The estimated
velocities and azimuths of the two signals are 287 degrees and 8.2 km/sec for the first and
151 degrees and 3.4 km/sec for the second signal. The estimated velocity of the second signal
differs from that estimated by MUSIC but some runs at different frequency centers yielded
estimators in that range for the other estimators as well. The estimators are summarized in
Table 13.

Table 12: Model Selection for China Event

Model R2  AICC Partial F-stat
1-Signal .34 -.40 8.1
2-Signal .46 -.43 3.4
3-Signal .52 -.41 1.6

Table 13: Summary Estimators and Uncertainties for Noisy China Event

Parameter Estimate(sd) 95% Confidence
Azimuth 1 150.8(1.3) 148.2-153.8

Velocity 1 3.4(.08) 3.3-3.6
Azimuth 2 286.8(1.1) 284.5-288.4
Velocity 2 8.2(.11) 8.0-8.5

The deconvolution corresponding to the two components noted in the previous section, shown
in Figure 16, gives the estimated signal and noise components in the regional data. The
estimated noise component from 148 degrees shows the character of the low frequency noise
before the signal enters. The estimated signal from 286 degrees shows the depth phase pP
much more clearly than does the single channel mixture. In this case, one obtains from the
plot a delay of about 4.6 seconds which is comparable to that obtained by Stroujkova and
Reiter (2006). We also note the noise reduction capabilities of the two-signal beam.
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Figure 16: Deconvolution of Chinese event into a noise source and a 287
degree signal.

6. Software Documentation and Data Files

6.1 General Structure

The software delivered with this final report is structured as a main driving program with
function subroutines for computing and plotting all quantities given in Sections 3, 4 and 5 of
this report. The one exception is the computation and plotting for the original series and its
time-frequency spectrum which we assume will be available to any user. The main program,
as indicated below calls the five functions that are needed to perform the multiple signal
analysis.

The function beam. m plots four conventional estimators (beam, Capon, F-statistic and MU-
SIC) in slowness space and gives the estimated velocities and azimuths. A separate function
corrsl. m gives the broad-band correlation estimators. For the contrived mixture of signals
shown in the text, the two functions produce Figure 12 and the entries necessary for Table
8.

The function muLsig.m develops the multiple signal analysis described in Section 4. This
gives the sequence of partial F-statistics and values of AICc necessary to settle on on op-
timum number of signals. The function identifies the optimum number of signals and gives

the corresponding slownesses for input to the deconvolution. The model selection criteria
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are computed for inclusion in Table 9. The estimators for velocities and azimuths corre-
sponding to the optimum model are given and the option to compute standard errors and
95% confidence intervals is included in the function conf-int.m. This would complete the
entries for Table 10. Finally, the option for deconvolving the component signals is given by
decon.m. We summarize the structure below where each main function is identified with the
appropriate section of the report:

Main Program: M-signal

1. functionbeam.m(3.1-3.3)

functionfprob, m

function vaz. m

2. function corrsl.m(3.4)

3. function muLsig.m(4.2-4.3)

function fprob.m

function v-az.m

function SSEL.m

4. function decon.m(4.5)

5. function confuint.rm(4.4)

function vaz. m

function SSEL. m

Note that there are three additional functions that are used by certain some of the five main
functions. The function fprob. m computes the P-value for the F-statistics obtained at various
stages. The function v-az.m computes the velocity and azimuth corresponding to a given
slowness. The squared error objective function (19) in computed in the subroutine SSEL.m.

6.2 Data

We summarize the data files provided in the report in Table 14 along with the sections where
an analysis is provided. More details for the inputs are given in Section 3.3

Table 14: Data Provided with Report

Description Section Data File Array Coordinates
1. Teleseismic 5.1 k-array r-k-array

2. Region(38dg) 5.2 ks1994202 r.ksar
3. Region(196dg) 5.2 ks199517 rksar

4. Mixture 5.2 ks9495mix r.ksar
5. China Regional 5.3 ks1991101 riksarA991_101
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6.3 Main Program and Function Subroutines

The code for the main program is given below with the calls to the function subroutines.
The inputs are the data files and sensor locations, along with the sample rate, frequency and
slowness ranges and an initial slowness vector for the largest model to consider.

In general, starting the vector with four bivariate slowness coordinates, i.e. slfull=(s/1i, s112, s121, 8122, s8
has been fairly effective. The single-signal model, M = 1 uses the first two coordinates as
start values, the M = 2 signal model uses the first two pairs and the M = 4 model uses all
four pairs as start value. Best results were obtained by starting with vectors in the middle
of the quadrant, e.g. (S11, s21) = (.1, .1). The recommended pattern will be clear for the
example in the next section.

% MSignal.m
% Multiple signal analysis
% Reads Data and Controls the Separate Analysis Features

% Conventional (Beam, Capon, F-statistic, MUSIC, Correlation)
% Sections 3.1-3.4 of Shumway (2006)

% Multiple Signal Analysis (Partial F, AIC, % Variation)
% Sections 4.1-4.3 of Shumway (2006)

% Bootstrap Confidence Intervals
% Section 4.4 of Shumway (2006)

% Deconvolution
% Section 4.5 of Shumway (2006)

%. Input Information
% Data File (data): n(points) X N(sensors) rectangular array
% Sensor Locations (r): N(sensors) X 2 Coordinates (E, N)
70 Sample Rate (sr): points/s
% Frequency Band: (LO, HI) in Hz
% Slowness Values: Range for s=(sl,s_2)
% Initial Slownesses for Multiple Signal Analysis(sl-full)
% rd=i/Vc, V-c=constant velocity circle in slowness plot

id=input ('File Number')

M=input('Assumed number of signals for MUSIC estimator')
% Set the maximum lag for the cross correlation estimator
mxlag=input('Maximum lag in pts for correlation estimator (25)')

% Load Data
if id==l

load k-array.dat, data=k-array;
% Sampling rate, frequency range
sr=l,LO=.02,HI=.08
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% Slowness range
s=-.5: .01: .5;,rd=1/8;

7" Array Coordinates (km) East-North
slfull=[-.1 -. 1 .1 -. 1 .1 .1 -. 1 .1]
load r-k-array, r=r_k_array;

end

if id==2
load ks1994202, data=ks1994202;
% Sampling rate, center frequency, bandwidth
sr=20,LO=.3, HI=3.3
% Slowness Range
s=-.25:.01:.25;, rd=1/8;
% Array Coordinates (km) East-North
load r-ksar, r=r-ksar;
sl-full=[.1 .1 -. 1 -. 1]

end

if id==3
load ks199517, data=ks199517;
% Sampling rate, center frequency, bandwidth
sr=20,LO=.2,HI=2.0
% Slowness Range
s=-.25:.01:.25;, rd=l/8;
%" Array Coordinates (kin) East-North
load r-ksar, r=r_ksar;
sl-full=[-.1 -.1 .1 .1 .1 -.1

end

if id==4
load ks9495mix, data"-ks9495mix;
%A Sampling rate, frequency range
sr=20,fo=l, LO=.2, HI=3.3
% Slowness Range
s=-.25: .01: .25;, rd=i/8;

%A Array Coordinates (km) East-North
load r-ksar, r=r-ksar;
sl-full=[-.1 -. 1 .1 .1 .1 -. i]

end

if id==5
load ks1991101
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sr=20

LO=.2;, H1=1.5

data=ksl991101(3501:4524,:);

%h data=ks1991101(2501:3524,:);
rd=1/8;

/,s=[-.4:.01:.4];

sl-full=[I.1 -. 1 -.1 .1 -. 1 -. 1 ]i
load r..ksar-1991-101, r=~r-ksar-1991-101;

end

%0 Sections 3.1-3.3 of Shumway(2006)
beani(data,r,sr,LO,HI ,s,rd,M);

% Section 3.4 of Shumway (2006)

[az-corr, vel-corrl=corr~sl(data,r,sr,mxlag)

% Section 4.2-4.3 of Shuniway (2006)

[M-min,az-nin,vel-min si-min]=mul-sig(data,r,sr,LO,HI,sl-full)

%A Section 4.5 of Shuniway (2006)

idecon~input('1 for deconvolution, 0 otherwise') if idecon==1

jdecon~input('0 for optimum input, 1 for user input')

if jdecon"==1

sl-min=input(C'Slowness vector')

end

decon(data,r,sr,LO,HI ,sl-min)

end

%A Section 4.4 of Shuinway (2006)

id-boot=input('l if bootstrap CI 0 otherwise Bootstrap takes time')

if id-boot=l

n-boot~input('# of bootstrap reps, 500 is suggested')

end

if id-boot=l

conf-int(data,r ,sr,LO,HI , slmin,n..boot)

end
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6.4 A Worked Example

We illustrate a run of the program for the mixture of signals considered in Section 5.2.
For this case, we restricted the start slowness vector to a maximum of three signals to cut
down on the printout. For sl-full=[-.1 -. 1 .1 .1 .1 -. 1], we looked at a potential for M = 3
signals with the primary searches in quadrants containing suspected signals. Different start
configurations can produce different looking end results so the above start value should be
checked against other permutations of the two dimensional slowness vectors.

Two plots are produced which are not shown. These are exactly Figures 12 and 13 with
no labeling on the plots. Generally, labeling is data dependent and can be done using the
gtext('label') instruction. The axes can also be changed after the fact by statements like
axis([l 1024 -20000 20000]).

>> M.signal
File Number4 id 4
Assumed number of signals for MUSIC

estimator2
M = 2

Starting with file number 4 and the 2-signal assumptions for MUSIC

Maximum lag in pts for correlation estimator (25)25
The starting value should cover the maximum time lag (positive or
negative.

mxlag = 25

sr = 20 fo= .1 L0 0.2000 HI 3.3000
Sampling rate and frequency ranges are typical for regional event

sl-full =

-0.1000 -0.1000 0.1000 0.1000 0.1000 -0.1000

avg-frequency 1.7500
The average of high and low cutoffs may not be the best for the
probe vector used in the Capon and MUSIC estimators

Input user center frequency.75

fo = 0.7500

R3
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8.3774 0.0231
0.0231 5.5422

F-stat 14.5768

Single-signal F-statistic and its P-Value
P-val = 7.6690e-019

azF = 196.6992

velF = 9.5783

azC = 198.4349

velC = 10.5409

azM = 198.4349

velM = 10.5409

az-corr = 195.5305

vel-corr = 9.3569

M = 3

Single Signal Model Results
sl-est = -0.0287 -0.1018

No-Signals = 1

FAzimuths = 195.7325

F_Velocities = 9.4540

Double Signal Model Results
slest = -0.0281 -0.1015 0.0516 0.0651

No-Signals = 1 2

F_Azimuths = 195.4661 38.4138
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FVelocities = 9.4983 12.0364

Triple Signal Model Results

sl-est = -0.0279 -0.1020 0.0514 0.0650 -0.0506 -0.3025

No-Signals = 1 2 3

FAzimuths = 195.2898 38.3312 189.4961

FVelocities = 9.4615 12.0728 3.2607

R-squared 0.4620 0.5961 0.6356

CorrectedAIC = -1.8968 -2.0507 -2.0029

ErrorSS = 281.6107 211.3944 190.7318

TotalSS = 523.3957

Partial F-statistics

Number-signals = 1
F-value = 14.5475

Number-signals = 2
F-value = 14.5475 5.2958

Number-signals = 3
F-value 14.5475 5.2958 1.6189

Best Model
M-min = 2

az-min = 195.4661 38.4138
vel-min =9.498312.0364
sl-min = -0.0281 -0.1015 0.0516 0.0651

1 for deconvolution, 0 otherwisel
idecon = 1

0 for optimum input, 1 for user inputO
jdecon 0
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M= 2

nplt= 3

1 if bootstrap CI 0 otherwise Bootstrap takes timel

id-boot = 1

* of bootstrap reps, 500 is suggested200

n-boot
200

M= 2
Standard deviations for Azimuths and Velocitie

stdAz 0.6476 0.9115

stdVel = 0.1076 0.1475 95%
Confidence Intervals
Az_025 = 193.9662 37.7199

Az_975 = 196.4673 41.3768

Vel_025 = 9.2418 11.7695

Vel_975 = 9.6738 12.3464

7. Discussion

This work was primarily motivated by the problem of detecting mixtures of signals on tele-
seismic and regional arrays. Such undetected mixtures are shown to give incorrect velocities
and azimuths when treated by traditional single-signal detection methods based on cross-
correlation or frequency wave-number methods. Furthermore, the separation of interfering
phases and coherent noise sources should improve detection statistics and lead to improve-
ments in location and magnitude estimates.

Using current improved computing platforms such as MATLAB make the nonlinear estima-
tion problems implicit in multiple signal modeling tractable and easy to implement. Using
early work involving multiple signal estimation (Shumway, 1970) and its extensions to wave-
number methods (Smart, 1972, 1976), we were able to formulate the problem in a regression
framework that led to a sequential detection approach for reliably determining the number of
signals and coherent noises present along with their estimated velocities and azimuths. We
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have provided methods for comparing detection performance using the F-statistic, the AICc
model selection statistic, and confidence intervals for the velocities and azimuths using the
bootstrap. Finally, we show that the regression model provides a method for deconvolving
the component signals and exhibit results for both long and short period seismic data.
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